

Catálogo

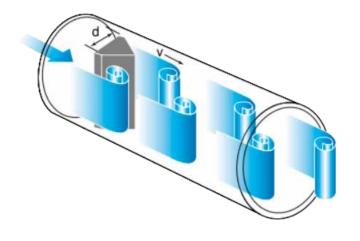
MEDIDOR DE VAZÃO VORTEX

Com Compensação de Temperatura x Pressão

Modelo TSMVZ

Descrição

O Medidor de vazão tipo vórtex é aplicado na medição de líquidos e gases de várias naturezas bem como vapores saturados e superaquecidos. É amplamente utilizada em derivados de petróleo, produtos químicos, nos mais diversos segmentos de indústria, e para as diversas finalidades de aplicação.


O Medidor de vazão modelo TSMVZ é construído com inclusão sensores de pressão (o sensor de pressão por difusão de silício) e temperatura (pt1000), embutidos de forma a fazer a leitura de vazão, compensando todas as correções considerando estas variáveis, aplicados aos diversos gases e vapores. o mais avançado algoritmo de cálculo faz esta operação de cálculo de compensação automaticamente.

O Medidor de vazão modelo TSMVZ é fabricado com um prisma alocado dentro do corpo, que com a passagem do fluido gera sucessivos vórtices regulares, em ambos os lados do prisma, e cuja ciclicidade de formação está associado ao volume de fluido que transita pelo instrumento. Um sensor piezoeléctrico detecta esta formação dos vórtices a jusante do prisma.

Princípio de Funcionamento

Vórtices se formam, à posição de jusante de um obstáculo colocado em um fluxo de fluido, a certas condições de deslocamento, esses vórtices se formam regularmente em lados alternativos ao obstáculo. Este fenômeno é comumente chamado de vórtice de Karman. supondo que a frequência vórtice seja "f", a velocidade do fluido através do tubo seja "v", e a largura do corpo do bluff ser "d". A relação é representada por f = st.v/d onde "st" é um número strouhal constante . o número strouhal é uma função da geometria física do corpo bluff ter uma seção transversal triangular usada no obstáculo é uma constante em 0,16 aproximadamente sobre uma ampla região em número de Reynolds.

Em uma faixa onde o número strouhal permanece constante, a frequência de vórtice é proporcional à velocidade do fluido, Portanto, a taxa de fluxo pode ser calculada contando o número de vórtices que estão sendo produzidos. Vórtices mais fortes e distintos formam atrás de um corpo de bluff com formato triangular, um desempenho desejável para uma medição consistente. o sensor piezoelétrico, por outro lado, está localizado em uma posição ideal para pegar vórtices com precisão e eficiência e, ao mesmo tempo, para a máxima facilidade de manutenção.

Data Rev.: 07/2024

Vantagens da Aplicação deste Medidor em relação a outras tecnologias

Sem peças móveis, resistência ao desgaste, estrutura simples, e rapidez nas respostas.

Boa resistência a vibrações a vibrações mecânicas, e interferências eletromagnéticas externas.

A temperatura de trabalho permitida é ampla de -40°C a + 350°C.

Vasta gama de tamanhos, com alta linearidade e repetitividade.

Saída de sinal de pulso ou sistema de dois fios de saída de sinal de corrente 4-20mA (padrão) e HART e RS485 (opcionais)

Fácil instalação e baixa manutenção.

Design digital, alta precisão e estabilidade.

Modelos com compensação de pressão e temperatura (opcional)

Caracteríticas

Aparato de medição altamente desenvolvido, para facilitação do uso, na complexa tarefa da medição de vazão em gases e vapores, de diversas naturezas.

- Sem partes móveis, resistente ao desgaste, a estrutura é simples, solida, robusta e de alta durabilidade
- A temperatura de trabalho é permitida é de -40 a + 350 °C
- · Alta linearidade, repetitividade, a rangeabilidade.
- · Sinal de saída pulso ou de dois condutores de saída de 4-20 mA.

Dados Técnicos

Fluidos:	Liquidos; Liquido, Gás, Vapor						
Temperatura de trabalho:	-40 ~ +200°C ; -40 ~ 280°C ; +40 ~ + 350°C						
Pressão de trabalho:		NPa ; 64MPa (>sob consulta)					
Precisão:	±1.0% e ±1.5%						
Faixa de medição:	` .	o/ ar em condições padrão), om temperatura padrão)					
Range de medição:	Liquidos: 0.4-7.0m/s;	Gás: 4.0-60.0m/s; Vapor: 5.0-70.0m/s					
Diâmetros da tubulação:	Dn15 a DN600						
Material	1Cr18ni9Ti						
Vibração permitida:	lugb ≤ 0.2g						
Grau de proteção:	lp65 ExialICT6 ga						
Condições Ambientais	Temp. Ambiente:	-40°C - 65°C (sem display local); -20°C- 55°C(com display local)					
	umidade relativa:	≤5% ~ 93%					
	pressão: 86-106kpa						
Alimentação:	12-24V/DC ou bateria 3.6V						
Sinal de saída:	Pulso (frequência): 2-3000Hz						
	4 a 20mA por loop (sina	al isolado) ≤ 500Ω					

Range de Vazão:

Tabela 1: Range Medidor Vortex para gás:

Diâmetro			Vazão	de gás	
mm	medidor/m ³	Range m³/h	frequência Setting Hz	CH Selection	fator de Amplificação
15	350000	3-50	300~3900	Ch3	500
20	145000	5-80	200~3000	Ch3	500
25	80000	6-120	150~2500	Ch3	500
32	35000	10-150	100~2200	Ch3	500
40	19000	16-320	80~2000	Ch3	500
50	9100	25-500	50~1200	Ch3	500
65	4260	40-800	40~900	Ch3	500
80	2300	60-1240	30~800	Ch3	500
100	1200	100-2000	25~600	Ch3	500
125	580	150-3000	20~500	Ch3	500
150	345	200-4500	15~400	Ch3	500
200	145	300-8000	10~320	Ch3	500
250	73	500-12000	8~240	Ch3	500
300	43	800-18000	7~200	Ch3	500
350	27	1000-24000	6~180	Ch3	500
400	18	1500-30000	5~150	Ch3	500
450	13	2000-40000	4~130	Ch3	500
500	9	2500-50000	4~120	Ch3	500
600	5	3000-70000	3~100	Ch3	500

Range de Vazão:

Tabela 2: Range Medidor Vortex para liquido.

Diâmetro	Fator		Vazão liq	uido (Água)	
mm	medidor/m ³	Range m³/h	frequência Setting Hz	CH Selection	fator de Amplificação
15	350000	0.8-9	40~800	CH2	500
20	145000	1.2-15	30~600	CH2	500
25	80000	2-18	18~ 360	CH2	500
32	35000	2.5-30	15~300	CH2	500
40	19000	3 -48	10~250	CH2	500
50	9100	5-75	9~190	CH2	500
65	4260	8-120	8~160	CH2	500
80	2300	14-180	51~20	CH2	500
100	1200	22-300	4~100	CH2	500
125	580	40-450	3~90	CH2	500
150	345	56-660	2~60	CH2	500
200	145	100-1200	2~50	CH2	500
250	73	150-1800	2~40	CH2	500
300	43	200-2500	2~35	CH2	500
350	27	280-3500	1~30	CH2	500
400	18	380-4500	1~25	CH2	500
450	13	480-6000	1~20	CH2	500
500	9	600-7000	1~18	CH2	500
600	5	800-10000	1~15	CH2	500

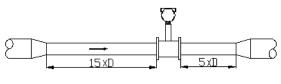
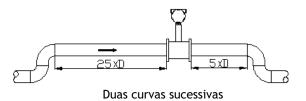
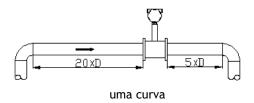
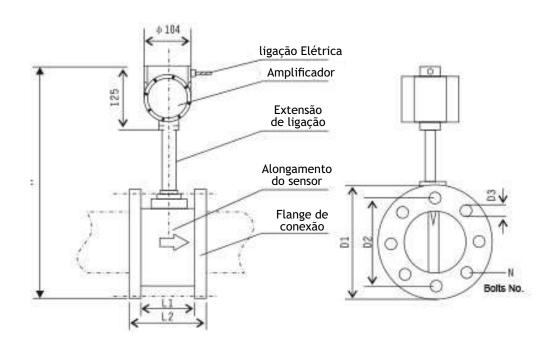

Range de Vazão:

Tabela 3: Range Medidor Vortex para Vapor Saturado (kg/h).


Abs pre.p(Mpa)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
Temp.T(°C)	120.2	133.5	143.62	151.84	158.94	158.94	170.41	175.36	179.68	187.96	195.04	201.37	207.11	212.37
Densidade kg/m³	1.129	1.651	2.163	2.669	3.170	2.669	4.162	4.665	5.147	6.127	7.106	8.085	9.065	10.05
DN20 Qmin	9	11	12	13	15	16	17	18	19	20	22	24	25	26
QMax	60	83	108	134	158	183	208	233	257	306	355	404	453	503
QMax mensurável	80	102	13	160	190	220	250	279	309	368	426	485	544	603
DN25 Qmin	14	17	19	21	23	25	27	28	30	33	35	37	39	42
QMax	93	133	173	215	254	293	333	372	412	490	568	647	725	804
QMax mensurável	136	198	260	320	380	440	499	559	618	735	853	970	1088	1206
DN40 Qmin	35	42	48	54	59	63	67	71	75	82	88	94	99	104
QMax	233	332	433	534	634	733	832	931	1029	1225	1421	1617	1813	2010
QMax mensurável	400	498	649	801	951	1100	1249	1397	1544	1838	2132	2426	2720	3015
DN50 Qmin	52	64	73	81	88	95	100	107	112	122	132	140	149	157
QMax	400	498	649	801	951	1100	1249	1397	1544	1838	2132	2426	2720	3015
QMax mensurável	667	826	1080	1335	1585	1834	2081	2328	2574	3054	3553	4043	4533	5025
DN65 Qmin	88	106	121	135	147	158	168	107	187	204	220	234	248	261
QMax	667	826	1080	1335	1585	1834	2081	1397	2574	3054	3553	4043	4533	5025
QMax mensurável	933	1320	1730	2135	2536	2934	3330	2328	4118	4902	5685	6468	7252	8040
DN80 Qmin	140	170	194	215	235	252	269	284	299	326	350	375	397	418
QMax	1166	1650	2160	2700	3170	3660	4160	4655	5150	6130	7100	9080	9060	10000
QMax mensurável	1400	1980	2596	3240	4015	4644	5270	5896	6520	7760	9000	10240	11480	12730
DN100 Qmin	175	212	242	269	293	315	336	355	374	408	439	468	496	522
QMax	1166	1650	2160	2700	3170	3660	4160	4655	5150	6130	7100	8080	9060	10050
QMax mensurável	2332	3300	4320	5400	6430	7320	8320	9310	10300	12260	14200	16160	19120	20100
DN125 Qmin	262	317	363	404	440	473	504	533	560	611	658	702	744	783
QMax	1866	2640	3460	4270	5070	5870	6660	7450	8240	9800	11370	12940	14500	16080
QMax mensurável	3500	4950	6490	8000	9510	11000	12500	14000	15440	18400	21300	24260	27200	30200
DN150 Qmin	437	529	605	673	733	788	840	888	934	1091	1097	1171	1239	1305
QMax	292	4130	5408	6670	7930	9170	10400	11640	12870	15320	17770	20210	66000	25120
QMax mensurável	4666	6600	8650	10680	1268	14670	16650	18620	20590	24500	28420	32340	36260	40200
DN200 Qmin	700	847	969	1076	1173	1261	1344	1421	1494	1630	1756	1873	1983	2088
QMax	4666	6600	8650	10680	12680	14670	16650	18620	20590	24500	28420	32240	36260	40200
QMax mensurável	9330	13200	17300	21360	25360	29340	33300	37240	41180	47000	56850	64680	72520	80400
DN250 Qmin	1015	1270	1614	1759	1892	2016	2132	2241	1446	2634	2808	1453	2975	3132
QMax	6998	9906	12980	16010	19020	22000	24970	27930	30880	36760	42640	48500	54390	60300
QMax mensurável	13997	19810	25960	32030	38040	44000	49940	55860	61760	73520	85270	97000	108780	120600
DN300 Qmin	1750	2116	2422	2690	2932	3153	3359	3550	3736	4076	4389	4682	4958	5220
QMax	11664	16510	21630	26690	31700	36670	41620	46550	51470	61270	71010	80850	90650	10050
QMax mensurável	20995	29720	38930	48040	57050	66000	74900	83800	92650	110300	127900	145530	16320	180900




Comprimento do Trecho reto



Redução concêntrica

Diametro	l1	L2	D1	D2	760h	D3	n
Dn 15	65	95	125	100	460	14	4
DN 20	65	95	125	100	460	14	4
DN 25	65	95	125	100	460	14	4
Dn 40	75	109	145	100	470	18	4
Dn 50	75	109	160	125	480	18	4
Dn 65	75	117	180	145	497	18	4
Dn 80	80	122	195	160	510	18	8
Dn 100	90	132	230	190	544	18	8
DN 125	100	146	245	210	564	18	8
Dn 150	120	170	280	240	594	22	8
DN 200	150	200	335	295	646	22	12
DN 250	160	214	405	355	708	22	12
Dn 300	170	224	460	410	760	22	12

Seleção do Modelo

Código do modelo descrito como:

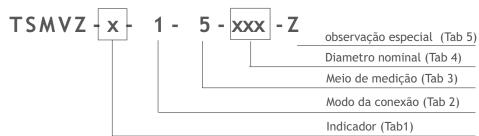


Tabela 1 - Indicador

TSMVZ-l	Indicador loc
TSMVZ-R	Indicador Remoto
TSMVZ-Z	Indicador inserção

Tabela 2 - Modo da conexão

Modo da conexão	Flange	Conexão tipo wafer	Inserção	outros
Mark no.	1	2	3	4

Tabela 3 - Meio de medição

Meio de medição	líquido	gás	Vapor saturado	Vapor superaquecido	outros
Mark no.	1	2	3	4	5

Tabela 4 - Diametro nominal

Tamanho	15	20	25	32	40	50	65	80	100	125	150	200	250	300
Mark no.	150	200	250	320	400	500	650	800	101	125	151	201	251	301

Tabela 5 - observação especial

Formato	Comum	sinal de saída padrão	segurança Intrinseca prova de explosão	Display local	Alta Tem- peratura (350°C)	Compen- sação de tempera- tura	Compensação de pressão	Compensação de Temperatura x pressão
Mark no.	none	М	b	х	g	w	Υ	Z